NUNZIUM

News That Matters

17/04/2023 ---- 21/04/2023

Worldwide, over 2 million people live at an altitude of 4,500 meters or higher. Interestingly, these high-altitude residents have a lower incidence of metabolic diseases such as diabetes, coronary artery disease, hypercholesterolemia, and obesity when compared to individuals living at sea level. Researchers have long been intrigued by this phenomenon and have made groundbreaking discoveries that shed light on how the human body adapts its metabolism under chronically low oxygen levels or hypoxia, like those experienced at high altitudes.

A recent study conducted by researchers at the Gladstone Institutes revealed that sustained exposure to low levels of oxygen, similar to those found at an altitude of 4,500 meters, caused a significant change in the metabolism of mice. The findings provide valuable insights into the metabolic differences of individuals living at high altitudes and offer new avenues for developing novel treatments for metabolic diseases. When exposed to chronically low oxygen levels, different organs in the body reshuffle their fuel sources and energy-producing pathways in various ways. This adaptation process enables people who live above 4,500 meters, where oxygen makes up just 11% of the air, to survive and thrive despite the shortage of oxygen, known as hypoxia. The researchers conducted their study on adult mice housed in pressure chambers containing 21%, 11%, or 8% oxygen—levels at which both humans and mice can survive. Over three weeks, the scientists observed the animals' behaviour, monitoring their temperature, carbon dioxide levels, and blood glucose. They used positron emission tomography (PET) scans to study how different organs consumed nutrients.

In the first few days of hypoxia, the mice moved less and spent hours entirely still. However, their movement patterns returned to normal by the end of the third week. Similarly, carbon dioxide levels in the blood, which decrease when mice or humans breathe faster to get more oxygen, initially decreased but returned to normal levels by the end of the three weeks. The animals' metabolism, however, seemed more permanently altered by the hypoxia. Blood glucose levels and body weight dropped for animals housed within the hypoxic cages, and neither returned to pre-hypoxic levels. These lasting changes generally mirror what has been seen in humans who live at high altitudes.

The PET scans of each organ revealed lasting changes as well. The body needs high oxygen levels to metabolize fatty acids (the building blocks of fats) and amino acids (the building blocks of proteins). In contrast, less oxygen is required to metabolize the sugar glucose. In most organs, hypoxia led to an increase in glucose metabolism—an expected response to the shortage of oxygen. However, the researchers found that in brown fat and skeletal muscle—two organs already known for their high glucose metabolism—glucose consumption levels decreased. The study showed that while some organs consume more glucose, others become "glucose savers" instead. This observation contrasts with the previous assumption that the entire body's metabolism becomes more efficient in using oxygen under hypoxic conditions, burning more glucose and fewer fatty acids and amino acids.

The findings of this study have significant implications for treating and preventing metabolic diseases. The lasting effects of long-term hypoxia observed in the mice, such as lower body weight and glucose levels, are associated with a lower risk of human diseases, including cardiovascular disease. Understanding how hypoxia contributes to these changes could lead to developing new drugs that mimic the beneficial effects of high-altitude living. Researchers hope to follow up on this work with studies that examine how individual cell types and levels of signalling molecules change in different ways with hypoxia. Such research could point toward ways to mimic the protective metabolic effects of hypoxia with drugs—or even high-altitude trips. By unravelling the metabolic changes as the body adapts to hypoxia, researchers can better understand how these adaptations protect against metabolic disease. This knowledge could pave the way for innovative drug development, offering new therapeutic options to individuals with diabetes, coronary artery disease, hypercholesterolemia, and obesity. In the future, we might even see recommendations for people to spend time at high altitudes for health reasons, similar to how athletes train at altitudes to improve their performance.

READ MORE

The perils of mercury contamination in food are becoming increasingly evident, posing a significant risk to human health. Mercury, a potent neurotoxin, is second only to plutonium in terms of toxicity. Consuming mercury-contaminated food can lead to many health problems, including damage to eyesight, hearing, and motor skills and interference with memory and thought processes. Moreover, mercury can attack fetuses in pregnant women, causing life-long brain damage. Despite the widely acknowledged dangers of mercury, its presence in one seemingly unlikely food source – dolphin meat – threatens consumers' health in Japan.

Recent tests conducted in Japan revealed alarmingly high levels of mercury in samples of Risso's dolphin offal. One sample exceeded the government-set regulatory limit for mercury by a staggering 97.5 times, while another had mercury levels 80 times higher than the safe limit. These findings have prompted marine conservation campaigners, led by the nonprofit Action for Dolphins (AFD), to file a complaint with the Japanese police, urging the removal of toxic dolphin meat from sale in supermarkets, restaurants, and the online retailer Yahoo! Japan. The consumption of dolphin meat has been a longstanding tradition in some regions of Japan, such as Taiji, where the annual slaughter of hundreds of dolphins has been the subject of international outrage and the Oscar-winning documentary "The Cove." Despite the cultural significance of this practice, the dangers associated with consuming mercury-contaminated dolphin meat cannot be ignored.

Japanese scientist Dr Tetsuya Endo has extensively studied mercury contamination in dolphin and small whale meat. His findings indicate that mercury levels in these marine mammals can be 20 to 5,000 times higher than recommended by the UN World Health Organization and the Japanese Ministry of Health. Other dangerous pollutants, such as PCBs (Polychlorinated Biphenyls) and cadmium, have been detected in dolphin and small whale meat sold in Japanese markets. People in Japan who regularly consume dolphin meat, particularly those living in Taiji, have been found to have dangerously high levels of mercury in their bodies. In tests conducted on 1,137 Taiji residents, average mercury levels were significantly higher than those found in residents from 14 other locations in Japan. In some cases, mercury levels exceeded 100 parts per million, far surpassing the government's safe level of 0.4 parts per million and 100 times the limit the U.S. Environmental Protection Agency set.

Studies have shown that mercury and other contaminants found in cetacean products can adversely affect fetal development, neural development, and memory, increasing the risk of developing Parkinson's disease, hypertension, and arteriosclerosis in adults. Despite a 2010 study by the National Institute for Minamata Disease suggesting that Taiji residents had not suffered ill effects from consuming whale and dolphin meat, the potential health risks associated with mercury-contaminated dolphin meat cannot be overlooked. Yahoo! Japan, the only major online retailer in the country that continues to sell cetacean products, claims that it does not sell dolphin meat on its site, only whale meat. However, the offal tested by AFD was listed on the Yahoo! Japan site as coming from the hanagondo-kujira, which can be translated into English as Risso's dolphin or Risso's pilot whale, both of which are biological members of the dolphin family. As top predators in the ocean, dolphins and small whales play a crucial role in maintaining the balance of marine ecosystems. The indiscriminate killing of these animals for their meat can have far-reaching consequences, disrupting food chains and causing harm to other marine species. Halting the consumption and sale of dolphin meat would protect human health and benefit nature.

The benefits of stopping the consumption of dolphin meat extend beyond protecting human health; they also contribute to preserving our oceans and the countless species that call them home. By raising awareness about these dangers and advocating for an end to the sale and consumption of dolphin meat, we can protect consumers' health and preserve the delicate balance of marine ecosystems. The Japanese government and retailers must take urgent action to address this issue and prioritize the well-being of humans and the environment.

READ MORE

As the world grapples with the ever-growing consequences of global warming, ice melting has become one of the most alarming signs of the ongoing climate crisis. Rapid climate changes are reshaping our planet, leading to destructive and unpredictable events that put lives, homes, and ecosystems at risk. In California, a state known for its weather extremes, melting a record snowpack has raised concerns over potential flooding and the long-term implications of such a dramatic climate event.

California experienced a wet and wintry start to the year, with the state's snowpack reaching the most profound levels recorded in over 70 years. The Sierra Nevada snowpack contains roughly 30 million acre-feet of water, surpassing Lake Mead, the nation's largest reservoir. While the heavy snowfall has eased drought conditions, experts are now concerned about the potential dangers that the upcoming "big melt" poses to valleys, foothills, and communities below the mountains. The extraordinary snowpack was caused by a series of historic blizzards and over a dozen atmospheric river storms that hit California early in the year. Although the storms replenished rivers and reservoirs, they also caused widespread flooding, levee breaches, and numerous fatalities. The abundance of water has prompted state and federal agencies to increase allocations for water providers and led Governor Gavin Newsom to roll back some drought emergency restrictions issued in 2021. However, too much water can also be problematic, as the state is now discovering. As temperatures rise and the snowpack melts, the water will flow downhill, potentially overwhelming rivers and reservoirs already struggling with capacity. The speed at which the snow melts will determine the severity of the flooding, with a rapid thaw brought on by an early-season heatwave or warm, humid air mass posing the most significant risks. With only a few more days of chilly weather expected, the state is bracing for warm and dry conditions, which could exacerbate the situation in vulnerable areas like the San Joaquin Valley and the Owens Valley.

The challenges posed by the record snowpack and the impending melt highlight the complexities and uncertainties associated with climate change. The climate crisis has made it increasingly difficult for experts to predict and prepare for such disasters as historical data becomes less reliable due to the growing frequency of outlier events. As a result, officials are left to navigate these situations without a playbook, relying on incomplete information and constantly changing conditions. The potential for flooding is not the only issue that California faces. Even as the state deals with the immediate dangers of the melting snowpack, the long-term effects of climate change, such as prolonged droughts and more frequent extreme weather events, continue to loom large. The situation in California serves as a stark reminder that the climate crisis is not only about gradual shifts in temperature but also about the unpredictable and severe consequences that these changes can bring. In the face of these challenges, authorities must provide resources and support to communities most vulnerable to climate change's impacts. A lack of political representation and resources in rural, disadvantaged towns has hampered their ability to adapt to and prepare for extreme events, leading to inequitable outcomes and an increased risk of harm. Addressing these disparities is essential in mitigating the dangers of climate change and ensuring the safety and well-being of all residents. The dramatic melting of California's record snowpack is a testament to how climate change can alter the landscape and disrupt the lives of millions. By examining the interconnected nature of the climate crisis and working towards comprehensive, equitable solutions, we can lessen the impacts of these dangerous events and better prepare for the uncertain future.

READ MORE

In the heart of Africa, Sudan stands at the crossroads of the Middle East and Sub-Saharan Africa. A nation with a rich history and a strategic coastline on the Red Sea, it has endured a turbulent past marked by military coups, civil conflicts, and a long-standing authoritarian regime. Since gaining independence in the 1950s, Sudan has struggled to find peace and stability. But recently, the country's political landscape has shifted dramatically, opening a path towards democracy and hope for a better future. However, as the situation develops, new challenges and escalating violence between rival military factions threaten to derail the progress made. In 2019, a coup overthrew Sudan's authoritarian president, Omar al-Bashir. Following the coup, Sudan was governed by a military leadership that promised a transition to civilian rule. This transition was seen as a pivotal step towards achieving democracy and stability.

However, the process has been fraught with difficulties and power struggles between military factions, namely the Sudanese army led by General Abdel Fattah al-Burhan and the Rapid Support Forces (RSF), a paramilitary group commanded by Sudan's deputy leader, Mohamed Hamdan Dagalo, better known as Hemedti. The major sticking points in their negotiations revolve around integrating the 100,000-strong RSF into the army and the leadership of the new force. The situation worsened in early April 2023 as tensions between the two factions escalated into violent confrontations. Fighting erupted in the capital city of Khartoum and other country areas, including the cities of Omdurman, North Darfur, and South Darfur. According to estimates by a doctors' Union and the World Health Organization, the clashes have led to the tragic loss of civilians, with nearly 100 people reported dead and over a thousand injured. Among the casualties were three staff members of the UN World Food Programme (WFP), which suspended its operations in Sudan due to the violence. Additionally, the fighting has caused significant damage to crucial infrastructure, such as Khartoum International Airport and state television headquarters.

The Sudanese army and the RSF have engaged in fierce battles, using armoured vehicles, truck-mounted machine guns, and warplanes. As the conflict enters its third day, both sides claim to control strategic locations in the country in Khartoum, Omdurman, and elsewhere. The violence has spread fear and panic among the civilian population, who are caught in the crossfire and forced to seek shelter from the ongoing hostilities. Despite international pressure urging both sides to cease hostilities and return to dialogue, the fighting shows no signs of abating. Top diplomats, including the US Secretary of State, the UN secretary-general, the EU foreign policy chief, the head of the Arab League, and the head of the African Union Commission, have all called for an end to the violence and a return to negotiations. Arab states with stakes in Sudan, such as Qatar, Egypt, Saudi Arabia, and the United Arab Emirates, have also made similar appeals. Meanwhile, the African Union announced sending its top diplomat, Moussa Faki Mahamat, to negotiate a ceasefire. At the same time, Egypt and South Sudan offered to mediate between the warring factions.

Sudan's stability is crucial to maintaining peace and security in Africa and the Middle East. The ongoing turmoil in Sudan holds great significance for the country's future and the entire region. The escalating conflict threatens to destabilize a nation further already struggling with the challenges of transitioning to democracy. Moreover, the fighting exacerbates an already dire humanitarian situation. The United Nations estimates that one-third of Sudan's population needs humanitarian assistance.

READ MORE

In an age of rapidly changing climate, new research has revealed startling evidence that Antarctica's melting ice sheet could retreat much faster than previously thought, with significant implications for sea-level rise worldwide. To fully understand the gravity of this revelation, it is crucial to comprehend the basics of ice-sheet grounding lines and how they influence global sea levels. Glaciers are vast rivers of ice that flow from land to ocean. The grounding line is the point at which these glaciers begin to float as they move off the land and into the ocean. As these glaciers melt and the grounding lines retreat, more ice is released into the oceans, causing sea levels to rise and threatening coastal cities and low-lying areas worldwide. The rate at which the grounding line retreats or moves inland is essential in understanding the potential for global sea-level rise.

Researchers have been studying the seafloor off the coast of Norway, where ancient markings reveal the retreat of a melting European ice sheet thousands of years ago. These markings, over 7,600 parallel, ladder-like ridges, were sculpted in the seafloor's muddy sediments as the ice sheet retreated during the last deglaciation. The researchers used these ridges to estimate the rate at which the grounding line retreated in the past, providing valuable insight into the potential rates of grounding-line retreat in Antarctica today. The study discovered that the maximum retreat of the Norwegian ice sheet was more than 600 meters a day. Ice losses from Antarctica due to climate change have already raised the surface of the world's oceans by nearly 1 centimetre since the 1990s. Today, the fastest retreating glaciers in Antarctica are seen to retreat by up to 30 meters a day. However, if these glaciers were to speed up, the extra meltwater would significantly affect global sea-level rise.

What is particularly concerning is that the researchers found areas in Antarctica where similar pulses of rapid withdrawal could occur even under the basal melt rates we know are happening at the moment. The fastest retreat rates were observed where the seafloor was relatively flat. These locations are where the ice above tends to be more uniform in thickness, and less melting is required to make the ice float and aid its retreat. This discovery highlights the vulnerability of flat-bedded areas of ice sheets to rapid, buoyancy-driven retreats. Modern satellite technology allows scientists to monitor the grounding zones of Antarctica's ocean-terminating glaciers. The fastest retreat has been observed at Pope Glacier in the continent's west. An average rate of 33 meters daily was measured over 3.5 months in 2017. While Pope Glacier is not one of Antarctica's largest glaciers, its retreat is still an important indicator of what may happen with more immense glaciers like Thwaites. Thwaites Glacier is the size of Britain and could raise global sea levels by half a meter if it were to melt entirely.

Researchers warn that even these glaciers' short-lived, rapid retreat will significantly affect their future dynamics. This new understanding of the potential rates of grounding-line retreat in Antarctica will help fine-tune computer models that predict the continent's destiny in a warming world. These models need essential details of ice behaviour, so looking into the geological past can provide valuable insights. In a world where our climate is rapidly changing, the research on Antarctica's melting ice sheet is a stark reminder of the fragile balance we share with our environment. The potential for rapid ice retreat and the subsequent rise in global sea levels pose a looming threat to millions living in coastal cities and low-lying regions.

READ MORE